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Abstract— Time has been shown to be determinant in many
diagnosis situations. A way to account for time is to enrich
the fault signature matrix with time information. However
this requires to anticipate the symptoms occurrence order or
provide estimates for the symptom occurrence dates. In this
paper, we use the time information present in the behavior
model of the system and automatically retrieve this information
when a symptom occurs. A conflict-based approach allows us
to generate the diagnoses. For this purpose, we extend the
classical DX diagnosis generation algorithm based on hitting
sets to deal with time and provide an incremental version.
The algorithm takes as input time labelled conflicts that are
obtained by checking the consistency of observations against
a causal behavioral model including explicit time information.
Our algorithm accounts automatically for time and outputs time
labelled diagnoses that are updated in time. It is illustrated on
a two tanks example including delays in which time aspects
have a strong impact on diagnosis and fault discrimination.

Keywords Model-based Diagnosis, temporal diagnosis,
fault isolation

I. INTRODUCTION

Model-based diagnosis in dynamical systems is an active
research domain. The standard approaches for continuous
systems, either in the diagnosis community rooted in control
(FDI community) or in the diagnosis community rooted in
artificial intelligence (DX community), have a static view
of diagnosis and do not account for aspects referring to
time for isolating or identifying faults [1]. For example,
the usual FDI fault signatures rely on symptoms that are
based on residuals and it is assumed that all the symptoms
are available simultaneously. This is not obviously the case
in many situations. The same is true for the DX logical
model-based diagnosis approaches since diagnoses are often
generated from symptoms and their associated conflicts 1

independently of their time of occurrence.
Although model-based diagnosis approaches based on dis-

crete event systems naturally account for time information by
using modelling formalisms like automata or Petri Nets [2],
[3], [4], continuous dynamics are generally not modelled and
diagnosis performs in an event-driven way. The continuous
systems diagnosis community has had some proposals to deal
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1see [1] for the relation between residuals and conflicts.

with time [5]. [6], [7], [8] but the problem remains partially
explored. As a matter of fact, eventhough temporal diagnosis
is at the core of several pieces of work, there is no general
”theory” of temporal diagnosis [9]. Recently, [10] [8] clearly
showed the impact of using time information on diagnosis
results.

Our paper starts from these considerations and shows that
information referring to time can be automatically accounted
for in the standard model based logical diagnosis framework
of the DX community [11], [12]. The main contribution of
this paper is thus to provide an extended version of the
incremental hitting sets algorithm [11], [13], which takes into
account aspects referring to time and introduces timed labels
into the diagnosis generation process, under the permanent
fault assumption.

In our approach, we consider that information referring to
time is available and is present in the physical’s behavioral
model, i.e. propagation delays due for instance to trans-
portation are known and given explicitly. This information
is captured in the so-called conflicts when inconsistencies
between model and observations are detected. It appears in
the form of timed labels associated to the conflict elements.
To do so, we propose a specific conflict generation algorithm
based on a causal representation of the behavioral model but
other approaches, for example [5] that deals with time in an
ATMS framework, could be used as well.

When fed with time labelled conflicts, the proposed al-
gorithm for diagnosis generation is able to output time
labelled diagnoses that are updated in time. In the case
of fault exoneration assumption, it is shown that possible
diagnosis candidates can be discarded on the basis of time
based consistency of the timed labels associated to the same
component involved in different conflicts. The algorithm is
incremental in the sense that it accounts for the time at
which the symptoms appear, i.e., the time at which the
conflicts are raised, and it is able to check the timed based
consistency of the conflict element timed labels against the
conflict occurrence time.

II. A WATER TRANSPORT SYSTEM EXAMPLE

Through this paper we use the example presented in [8]
which is a two reservoirs system given in Fig. 1.

It consists in continuously supplying water to two consume
areas (s1 and s2 are the corresponding flows) from two
cascaded geographically distant reservoirs (y1 and y2 are the
water levels in the respective reservoirs). The water transport
between reservoirs is modelled as an open flow channel with
a pump. τ1 between the two reservoirs and τ2 between
the pump and reservoir 1 are the transport time delays.
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Fig. 1. Two reservoirs example

Variable uout1 represents the output flow from reservoir 1
and upump represents the flow through the pump.The mes
index indicates measured variables. The system is modelled
by the following set of discrete time equations, in which ∆t
is the sampled time period:

Upper tank: y1(t + ∆t) = y1(t)− k1s1(t)

+k2upump(t− τ2)− k3uout1(t) (1)
Output pipe: uout1(t) = k

√
y1
∼= k4y1(t) (2)

Pump: upump(t) = k[a(h− y2)
2 + b(h− y2) + c]

∼= k5 + k6y2(t) (3)
Lower tank: y2(t + ∆t) = y2(t)− k7s2(t)

+k8uout1(t− τ1)− k9upump(t) (4)
Sensor tank1: y1mes = y1 (5)
Sensor tank2: y2mes = y2 (6)
Sensor area1: s1mes = s1 (7)
Sensor area2: s2mes = s2 (8)

III. DIAGNOSIS ORIENTED CAUSAL MODELLING

Causal models are proposed and shown to be suitable
for diagnosis in several pieces of work. In [14][15][16],
model prediction is performed along causal influences and
the model causal structure is proposed as a substitute of
dependency recording mechanisms. Also, the generation of
analytical redundancy relations from causal models is ap-
proached in [17]. The causal model approach is applied to
fault detection and isolation on a real petro-chemical process
in [18].

Causal models are generally supported by an oriented
graph, also called Causal Graph, in which nodes represent
variables and edges represent influences from variable to
variable. An oriented edge from variable x to variable y
exists if x has an influence on y, i.e. if a perturbation on
variable x affects the value of variable y. x and y are called
the cause and the effect variable of the influence, respectively.

Influences not only capture the causal structure of the
model [19] but also behavioral information when adequately
labelled by propagation parameters or functions. For our

purpose, let us assume that every influence of the causal
graph is labelled by a symbol Ii standing for the influence
name, a symbol Cj standing for its supporting physical
component, and an integer d capturing time information. d
is given with respect to a sampled time of period ∆t, i.e.
it is equal to an integer so that d × ∆t is the time delay
required for the effect variable to react to a change of the
cause variable. When no ambiguous, d is also called the
delay of the influence. Influences may also have an associated
activation condition given by a boolean.

Three types of variables exist to model a system:
Input variables: these variables are exogenous to the sys-

tem. Their values are controlled by the system’s environment
and assumed to be known.

Measured or Output variables: these variables are known,
as provided by a sensoring device.

Unmeasured variables: these variables are internal to the
model and their values are not known.

When fed with input variable values, the causal model
can be used to predict the value for other variables by
propagating them through the influence network. A fault
detection mechanism can be based on checking the values
predicted for output variables against their observed values.
If the predicted value is not consistent with the observed
value, then an alarm is activated. A discrepancy for variable
y indicates a misbehavior and is noted with the predicate
MISB(y).

Causal ordering methods issued from the Qualitative Rea-
soning community can be advantageously applied to derive
automatically the causal structure associated to a set of
relations [19], [20]. As an example, consider the causal
structure of the two tanks system example given in Fig. 2
obtained from (1-8). In this figure, dx stands for the variable
x(t + ∆t); every influence Ii, i = 1, ..., 14, is associated
with its underlying physical component: C1 corresponds to
the level sensor of Tank 1 modelled by (5); C2 to the level
sensor of Tank 2 modelled by (6); C3 to the flow sensor
of consume area 1 that is modelled by (7); C4 to the flow
sensor of consume area 2 that is modelled by (8); C5 to
the output pipe; C6 to the pump; C7 to the upper tank and
C8 to the lower tank. One should notice that one component
may be associated to several influences like for C7 and C8.
Equations which involve variables at different time points
support dynamic influences, which have naturally a non zero
delay. For example, the influence between a cause variable
x and an effect variable dx = x(t + ∆t) has a natural delay
of 1 sampling period.

IV. CONFLICTS AND DIAGNOSES

Let us call CSD the Causal System Description as pre-
sented in section III, COMP the set of physical components
composing the physical system, and OBS the set of obser-
vations at some time point. When one or several variables
misbehave, the diagnosis system must derive all sets of
faulty components of COMP that may explain the fact. The
influences that may be at the origin of the misbehavior
of a variable V are those related to the edges belonging



Fig. 2. Causal structure for the two tanks system

to the paths going from the measured nodes to the node
representing V , also called ascending influences. The set
of such influences (or, equivalently, set of corresponding
components) is a conflict set, in the sense of Reiter [11].
Conflict sets are sets of components which cannot behave
normally altogether according to the observations. A minimal
conflict is a conflict that does not strictly include (in the
sense of set inclusion) any conflict. [11] proved that minimal
diagnoses can be computed from minimal conflicts. In the
example of Fig. 2, if we have MISB(dy1) then there is one
(minimal) conflict set {C1, C2, C3, C5, C6, C7}.

Proposition 1 (Reiter [11]) ∆ ⊆ COMP is a (minimal)
diagnostic for (CSD, COMP, OBS) if and only if ∆ is a
(minimal) hitting set for the collection of (minimal) conflict
sets of (SD, COMP, OBS).

A hitting set of a collection of sets is a set intersecting
every set of this collection. An incremental algorithm to
generate all the minimal hitting sets based on a set of
conflicts was originally proposed by [11], then corrected by
[21]. This algorithm gives a means to compute diagnoses
incrementally, under the permanent fault assumption.

The diagnosis algorithm builds a Hitting-Set tree (HS-tree)
in which all the nodes but leaves are labelled by a conflict
set. For each element s in the conflict label of node n, an
edge labelled s joins n to a successor node. H(n) is defined
as the set of edge labels on the path from n to the root
node. The HS-tree is built by considering every conflict in
arbitrary order. Every new conflict is compared to every leaf
of the HS-tree, and some new leaves are built if necessary.
The resulting HS-tree is pruned for redundant or subsumed
leaves before the next conflict is considered. At the end of the
diagnosis procedure, the minimal hitting sets, and hence the
minimal diagnoses that explain the system’s misbehaviors,
are given by the set of edge labels H(l) associated to the
open leaves l of the HS-tree.

We use the algorithm version by [13] which is more
efficient because it uses less comparisons at each step.
Indeed, [13] showed that to prune the tree when a new

conflict set S has been compared to every leaf, it is sufficient
to prune the new leaves. Moreover, each new leaf having the
label s ∈ S on its last edge has only to be compared to the
old ones having the label s and no other label of S on its path
to the root. This algorithm is given in section VI-C; bolded
lines marked with a star should be ignored at this stage. For
every new conflict S and every element s of the conflict, the
algorithm builds two lists, newleaves[s] and oldleaves[s],
which are then compared. A new leaf l is closed if H(n)
contains H(l) for some old leaf.

V. ACCOUNTING FOR TIME IN CONFLICT GENERATION

Information referring to time is explicitly represented in
CSD by the delays associated to influences or to their corre-
sponding components (cf. Fig. 2). From now on and given the
equivalence, we work indifferently with components or with
influences. Faults are assumed to be permanent, although
their effects (the associated symptoms) may be transient.
Delays are assumed to be an order of magnitude above the
slowest detection time of the consistency check tests.

A timed label called failure time is introduced to indicate
how long, at the shortest, a component, say C, has been
failing with reference to the current instant. In other words,
given the current time t, the failure time indicates that the
component C must have been faulty since at least time (t−
failuretime) and this is noted Cfailuretime. The elements
of the conflicts that are generated when a variable misbehaves
in CSD are hence each labelled by a failure time. These
conflicts are called time labelled conflicts.

[5] defines the temporal extend TE(α) of a proposition α
as the set {ti/α holds at ti}. Let us denote the fact that C is
faulty by the predicate AB(C). Then, Cfailuretime is a short
way to represent TE(AB(C)) ⊇ [t− failuretime, t].

The following considerations are taken into account for
reasoning about time from the causal model CSD, i.e.,
for assigning the failure times to the components when
generating conflicts (cf. Fig. 2) :

1) The influence’s delay represents the time needed by
an effect variable to react to a variation of the cause
variable. For example, a deviation on the variable
upump takes τ2 + 1 periods of time ∆t before it
propagates to the variation of dy1.

2) The effect of a fault on a component associated to
an influence propagates instantaneously to the effect
variable, regardless of its related delay. For example
a fault on C1 propagates instantaneously to the effect
variable y1.

3) The occurrence of a fault on a component associated
to an influence may account for a downstream misbe-
having variable at time t if and only if the influence
was active at time t−AccuDelay, where AccuDelay is
equal to the sum of the delays on the path going from
the directly influenced variable to the misbehaving
variable, and the other influences along the path were
active at times t− their respective accudelays. In this
case the whole path is said to be active. For example
a fault on C2 can account for a misbehavior of dy1 if



and only if influences I2 and I6 were both active at
time t− (τ2 + 1) and I12 was active at time t.

Given the above, the following proposition makes explicit
how to determine the failure time associated to a component
in a conflict.

Proposition 2 (Failure Time of a Conflict Element)
Consider a CSD and a given component C associated to an
influence I located upstream from a variable y misbehaving
at time t. Assuming that there are n active paths from the
effect variable of I to the misbehaving variable y, then C
is an element of the conflict associated to MISB(y) and its
failure time is given by the minimum AccuDelay among the
n active paths.

This result is quite obvious. When a component has
two or more ways to reach the same variable, the mini-
mumAccuDelay is enough to explain that the variable has
been influenced by the faulty component. Indeed, if a fault
on component C has an effect on a variable x via a ”short”
channel with delay τ1 and a ”long” channel with delay τ2,
then Cτ1 implies Cτ2 , i.e. C faulty since at least time t− τ1

implies C faulty since at least time t− τ2.
Conflict generation is carried out for each misbehaving

variables in the CSD as explained in section IV. The
pseudo-algorithm for generating time labelled conflicts is
the following :

1. FOR each conflict
2. FOR each component in the conflict
3. Calculate AccuDelay for each path

going from the variable directly downstream the
component to the misbehaving variable

4. IF the set of active paths is not empty
5. Select the minimum AccuDelay among the

active paths
6. Label the component with the minimum

AccuDelay
7. End IF
8. ELSE
9. Remove the component from the conflict
10. END for each component
11. END for each conflict

VI. TIMED DIAGNOSIS GENERATION

The diagnosis generation algorithm is devised to run
synchronously with the sampled time, at that instants when
new symptoms occur, i.e. conflict sets are generated. In
this section, we extend the incremental diagnosis generation
algorithm [11][21][13] to deal with aspects referring to
time in two cases: simultaneous symptom occurrence and
symptoms occurring in time. The algorithm takes as input
time labelled conflicts and outputs time labelled diagnoses.

A. Management of simultaneous symptoms

This section analyzes the case of multiple simultane-
ous symptoms occurrence. The following principle, called
Maximum Failure Time Principle is used to determine the
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Fig. 3. One component in two conflict sets

diagnosis element failure times from the conflict element
failure times.

Maximum Failure Time Principle Let us consider that one
component is involved in the misbehavior of two, or more,
variables (see Fig. 3 in which it is the case for C1 2), i.e. it
appears in several conflicts with different failure times. Then,
in the generated diagnoses, this component is labelled with
the maximum failure time of the component in the conflicts.

Labelled with the maximum failure time, the component
simultaneously explains the misbehavior of all the misbehav-
ing variables, i.e., simultaneously covers all conflicts. This
is a direct consequence of the ”failure time” semantics that
means that the labelled component must have been faulty
since at least time (t − failuretime), t being the current
time.

Let’s take the two tanks example and its causal structure
of Fig. 2. Consider two simultaneous misbehaving variables
MISB(dy1) and MISB(dy2) at time t and the two corre-
sponding conflicts:

Conf(dy1) = {C11 , C2τ2+1 , C31 , C51 , C6τ2+1 , C70}
Conf(dy2) = {C1τ1+1 , C21 , C41 , C5τ1+1 , C61 , C80}
Component C1 has a failure time of 1 in the first conflict

and of τ1 +1 in the second one. Then, the single component
time labelled diagnosis based on C1 is {C1τ1+1} because
max[1, τ1 + 1] = τ1 + 1. The hitting-set tree corresponding
to the management of these two conflicts by our algorithm is
shown in Fig. 4. The diagnoses D1 to D8 given below result
from the open leaves ol1 to ol8 with the following indexes
{ol1 = 1, ol2 = 2, ol3 = 4, ol4 = 5, ol5 = 9, ol6 = 12,
ol7 = 15, ol8 = 18} in the hitting-set tree. Notice that the
Maximum Failure Time Principle has been used for all the
single component diagnoses D1 to D4.

D1 = {C1τ1+1}
D2 = {C2τ2+1}
D3 = {C5τ1+1}
D4 = {C6τ2+1}
D5 = {C31 , C41}
D6 = {C31 , C80}
D7 = {C70 , C41}
D8 = {C70 , C80}

B. Management of symptoms occurring in time
When misbehaving variables and hence the corresponding

conflicts appear at different times, failure times associated to

2Fig. 3 outlines part of the causal structure for the two tanks example.



Fig. 4. Timed diagnosis with simultaneous symptom occurrence
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Fig. 5. Maximum failure time principle

the components in diagnoses must be updated to account for
the interval of time in between conflict occurrence. This is
referred to as the Updated Failure Time Principle.

Updated Failure Time Principle Let us assume that Cif1

is involved in a conflict at date t and that Cjf2 is involved
in a conflict at date t+δt, then the generated diagnosis must
update the failure time of Ci to account for δt. The generated
diagnosis candidate is hence {Cif1+δt, Cjf2}.

After updating failure time(s), the Maximum Failure Time
Principle applies like in the case of simultaneous conflicts.
This is represented in Fig. 5 where f1 and f2 indicate two
failure times for the same component C in two different
conflicts Conf1 and Conf2 rised at t1 and t2. At time t2,
C must be labelled with the maximum failure time f2.

Note that the case of simultaneous conflicts can be viewed
as a special case of conflicts occurring in time where δt = 0.

Fig. 6 illustrates the procedure. The results depend on the
values of δt, τ1 and τ2, which determine the final values of
the updated temporal labels. Let us consider δt < τ1 < τ2

with numeric values δt = 1, τ1 = 3, and τ2 = 5, then the
generated diagnoses with failure times updated according to
the Updated Failure Time Principle and Maximum Failure
Time Principle are given in Table I.

Note that the diagnoses at time t+δt are the same, in terms
of components, as those that would be obtained if the two
conflicts were simultaneous but components have different
temporal labels.

In particular, the order of symptoms changes the temporal
labels of the diagnoses elements. When conflicts appear at

Fig. 6. Diagnoses at different times: MISB(dy1) at time t and MISB(dy2)
at time t + δt, (δt = 1, τ1 = 3 and τ2 = 5)

TABLE I
DIAGNOSES WITH FAILURE TIMES UPDATED

Diagnoses at time t Diagnoses at time t + δt
D1 = {C11} D1 = {C1τ1+1}
D2 = {C2τ2+1} D2 = {C2τ2+1+δt}
D3 = {C31} D3 = {C5τ1+1}
D4 = {C51} D4 = {C6τ2+1+δt}
D5 = {C6τ2+1} D5 = {C31+δt, C41}
D6 = {C70} D6 = {C31+δt, C80}

D7 = {C70+δt, C41}
D8 = {C70+δt, C80}

different times, the time of occurrence of conflicts is naturally
taken into account by the Updated Failure Time Principle.
It is easy to show that different temporal labels are obtained
by the time of occurrence of the set of symptoms.

This is illustrated by inverting the order of the two
symptoms in the previous example: MISB(dy2) happens at
time t and MISB(dy1) at time t + δt (see Fig. 7). The open
leaves of the hitting set tree determine the diagnoses given in
Table II, which differ from those obtained when MISB(dy1)
happens before MISB(dy2) by the temporal label.

C. Timed diagnosis generation algorithm

The incremental hitting sets generation algorithm pre-
sented in section IV has been revised to manage timed
labels, applying the Maximum Failure Time Principle and
the Updated Failure Time Principle outlined in sections VI-A

Fig. 7. Diagnoses at different times and inverted order: MISB(dy1) at time
t and MISB(dy2) at time t + δt, (δt = 1, τ1 = 3 and τ2 = 5)



and VI-B. It is described in the following pseudo-algorithm
in which the variants from the original Levy’s algorithm are
indicated by bolded and star line numbers.

The algorithm begins with a tree T consisting of an
unlabelled root. H(n) represents the set of edge labels on
the path from the root node to the node n.

1. For Each time labelled conflict set S Do
2* Determine δt and apply the Updated Failure Time

Principle to all the edge labels of the current HS-tree
3. For Each (time labelled conflict) element s in S Do
4. Initialize the lists with new-leaves[s]:={};

old-leaves[s]:={};
5. End For Each (time labelled conflict) s in S
6. For Each leaf l of T Do

* New leaves creation *
7. If H(l) ∩ S = {} Then
8. For Each s in S Do
9. Add to l an edge labelled with s and a successor

node ns;
10. Add the pair (ns, H(l) ∪{s}) to new-leaves[s];)
11. End For Each s in S

* Old leaves creation *
12. Else If H(l) ∩S = {s} Then /* s is a singleton*/
13. Add the pair (l,H(l)) to old-leaves[s];
14* Apply the Maximum Failure Time Principle and

label the conflict element {s} with the maximum
failure time

15. End if

16. End For Each leaf l of T

* Closing leaves *
17. For Each s in S Do
18. For Each leaf n of new-leaves[s] Do
19. If H(n) contains H(l) for some leaf l of

old-leaves[s] Then close the branch in n;
20. End if
21. End For Each leaf n of new-leaves[s]
22. End For s in S

23. End For Each conflict set S

TABLE II
DIAGNOSES WITH FAILURE TIMES UPDATED AND DIFFERENT ORDER OF

SYMPTOMS

Diagnoses at time t Diagnoses at time t + δt
D1 = {C1τ1+1} D1 = {C1τ1+1+δt}
D2 = {C21} D2 = {C2τ2+1}
D3 = {C41} D3 = {C5τ1+1+δt}
D4 = {C5τ1+1} D4 = {C6τ2+1}
D5 = {C61} D5 = {C41+δt, C31}
D6 = {C80} D6 = {C41+δt, C70}

D7 = {C80+δt, C31}
D8 = {C80+δt, C70}

Fig. 8. Diagnoses at different times and exoneration: MISB(dy1) at time
t, MISB(dy2) at time t + δt, (δt = 3, τ1 = 3 and τ2 = 5)

Timed Minimal Hitting Sets Algorithm

VII. FAULT EXONERATION ASSUMPTION CASE

In the temporal framework proposed in section VI, the
semantics of the failure time are quite weak due to the no
exoneration fault assumption. Indeed, a fault may be present
without manifesting at the level of misbehaving variables.
Hence, the failure time of a component C acts just as a
memory of when the first conflict including C occurred.
Now, when the exoneration assumption is applicable, this
assumption can be advantageously used to strengthen the
failure time semantics. In this case, the failure time indicates
exactly the time that the component has been failing. One
can consequently perform a time based consistency check
that leads to discard time inconsistent diagnoses, producing
less ambiguous diagnoses.

In the diagnosis generation algorithm, this means that
some leaves can be closed because of time based inconsis-
tency (see scenario of Fig. 8 explained below).

The following principle, called Minimal Required Time
Principle is used to check time consistency. It is based
on the fact that the failure times of a common component
involved in two consecutive conflicts must account for the
time interval elapsed between the symptoms occurrence.

Minimum Required Time Principle Without loss of gen-
erality, let us assume two misbehaving variables appearing
at times t and t + δt and a component C involved in the
two corresponding conflicts with failure times f1 and f2,
respectively. Then, C leads to a time consistent diagnosis if
and only if:

f2 − f1 = δt (9)

The time consistency check may as well be performed
after applying the Updated Failure Time Principle. Let us
define the updated label fnew

1 = f1 + δt, then the condition
in (9) equivalently expresses as:

f2 = fnew
1 (10)



TABLE III
DIAGNOSES WITH EXONERATION IN TIME

Diagnoses at time t Diagnoses at time t + δt
D1 = {C11} D1 = {C1τ1+1}
D2 = {C2τ2+1} D2 = {C5τ1+1}
D3 = {C31} D3 = {C31+δt, C21}
D4 = {C51} D4 = {C31+δt, C41}
D5 = {C6τ2+1} D5 = {C31+δt, C61}
D6 = {C70} D6 = {C31+δt, C80}

D7 = {C70+δt, C21}
D8 = {C70+δt, C41}
D9 = {C70+δt, C61}
D10 = {C70+δt, C80}

Note that in this case, the Maximal Failure Time Principle
is useless because time consistency implies that a given
component has necessarily equal time labels.

The algorithm for the exoneration case is obtained as
a variant of the algorithm in the no exoneration case by
replacing the *Old leaves creation* set of lines by the
following:

* Old leaves creation *
12. Else If H(l) ∩S = {s} Then /*s is a singleton*/
13* If the Minimal Required Time Principle

is satisfied for the timed labels of s
14. Add the pair (l,H(l)) to old-leaves[s];
15. Else close the branch in l
16. End If

17. End If

18. End For Each leaf l of T

Applying (10) in the diagnosis scenario of Fig. 8 in which
δt = 3, τ1 = 3 and τ2 = 5, it happens that component C1
fulfills the requirements to be a diagnosis: fnew

1 = 1+δt = 4
and f2 = τ1 + 1 = 4, hence f2 = fnew

1 . The same happens
with C5. On the other hand, C2 and C6 are not considered
as single diagnoses because of time inconsistency: fnew

1 =
τ2 +1+ δt = 9 and f2 = 1, which does not satisfy (10). On
the HS-tree, leaf 2 corresponding to C2 as single component
diagnosis candidate has been closed, the same is true for
leaf 5 corresponding to C6. The whole set of generated time
labelled diagnoses is given in Table III.

Considering the case of inverted order symptoms, i.e.
MISB(dy2) happens at time t and MISB(dy1) happens at
time t+ δt, with the same numeric values for δt, τ1, and τ2,
(10) eliminates all single component diagnoses, as shown in
Fig. 9 and in Table IV.

A. Fault exoneration relaxed case

As a relaxated case, one may be interested in distinguish-
ing diagnoses only based on the order of occurrence of
symptoms, i.e. checking temporal consistency but not timed
consistency. Let us notice that in this case the condition of
(9) becomes:

Fig. 9. Diagnoses at different times and exoneration: MISB(dy2) at time
t, MISB(dy1) at time t + δt, (δt = 3, τ1 = 3 and τ2 = 5)

TABLE IV
DIAGNOSES WITH EXONERATION IN TIME AND DIFFERENT ORDER OF

SYMPTOMS

Diagnoses at time t Diagnoses at time t + δt
D1 = {C1τ1+1} D1 = {C41+δt, C11}
D2 = {C21} D2 = {C41+δt, C2τ2+1}
D3 = {C41} D3 = {C41+δt, C31}
D4 = {C5τ1+1} D4 = {C41+δt, C51}
D5 = {C61} D5 = {C41+δt, C6τ2+1}
D6 = {C80} D6 = {C41+δt, C70}

D7 = {C80+δt, C11}
D8 = {C80+δt, C2τ2+1}
D9 = {C80+δt, C31}
D10 = {C80+δt, C51}
D11 = {C80+δt, C6τ2+1}
D12 = {C80+δt, C70}

f2 − f1 > 0 (11)

or equivalently:

f2 > fnew
1 − δt (12)

In this case, the Maximum Failure Time Principle must
be applied because the time consistency condition does not
guarantee that the time labels of the same component are the
same.

Diagnoses in the case of Fig. 8 remain the same. However,
in the case of Fig. 9, C2 and C6 are now eligible as single
component candidates, as shown in the list of diagnoses at
time t + δt in Table V.

B. Related work

The objectives of [8] are naturally close to ours but [8]
performs along a pure FDI approach whereas our work is
stated within the DX framework. To be more explicit, [8]
generates diagnoses by comparing the observed signature
to theoretical fault signatures forming the columns of the
fault signature matrix. This has a number of important
implications as explained in [1], in particular fault exonera-
tion is implicitly assumed. Our framework is hence more
general and our results are consistent with their results



TABLE V
DIAGNOSES WITH FAULT EXONERATION RELAXED CASE

Diagnoses at time t
D1 = {C2τ2+1}
D2 = {C6τ2+1}
D3 = {C41+δt, C11}
D4 = {C41+δt, C31}
D5 = {C41+δt, C51}
D6 = {C41+δt, C70}
D7 = {C80+δt, C11}
D8 = {C80+δt, C31}
D9 = {C80+δt, C51}
D10 = {C80+δt, C70}

when assuming fault exoneration, with or without relaxated
time consistency check. Another difference comes from the
required source information about time. Whereas [8] needs
to predict by hand the symptoms occurrence order or provide
estimates for the symptom occurrence dates, our method uses
the time information already present in the behavior model
of the system and derives the former automatically.

The paper [5] deals with time propagation, in particular
across ATMS labels, to permit prediction sharing across time.
The output of this work provides time labelled conflicts,
arising from the inconsistencies. Such conflicts could be used
as an input for our method. However [5] does not consider
the problem of generating time labelled diagnosis from such
conflicts.

The methods proposed by the diagnosis community deal-
ing with discrete event (DE) systems naturally account for
temporal aspects by using automata or Petri nets models [2],
[3], [4]. The main difference is that they are generally based
on fault models, i.e. the DE model explicitly represents the
sequence of events (symptoms) that are expected to occur
after the occurrence of a fault. On the contrary, our approach
is rooted along the consistency based diagnosis approach.
In this respect, the two approaches are complementary and
could be considered for integration.

VIII. CONCLUSION

We have extended the diagnosis generation algorithm
based on hitting sets to deal with temporal aspects and pro-
vided an incremental diagnosis which outputs time labelled
diagnoses. The timed labels associated to the components
of the diagnosis candidates indicate how long ago the fault
must have occurred according to the time it is detected. One
advantage of this algorithm compared with other approaches
like [8], [6] is that it directly uses the source temporal in-
formation included in the model of the physical system. The
main feature of the approach is that it is formulated along
the DX model based diagnosis framework: it introduces
the temporal information necessary to diagnose a dynamical
system into the widely used hitting sets generation algorithm
that was originally devised for static diagnosis. This work
allows us to foresee interesting perspectives for bridging with
the dynamic diagnosis approaches used in the discrete event
systems community.
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